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ABSTRACT 

The potato was ranked by the Food and Agriculture Organization of the United Nations (FAO) 

as the world’s fourth most important food plant with a total production of three-hundred million 

tons and total planted area of nineteen million hectares. Potato is affordable staple food for over 

one billion people. Potato is a crop of considerable nutritional significance, rich source of car-

bohydrates, provides good amount of essential amino acids, vitamins, minerals, and resistant 

starch of prebiotic benefits. Moreover, the high content of starch in potato makes it a crop of 

crucial industrial importance.  

Fungal diseases as biotic stressors are very common in almost all potato varieties worldwide. 

Early blight is a fungal infection mainly triggered by Alternaria alternata and Alternaria solani, 

which viciously attacks potato-growing areas in Europe and inflicts serious reduction on tubers 

yield and quality. When the environmental conditions are in favor of the pathogen with no or 

poor agronomic control, total defoliation of a potato field can be reached in less than week. The 

chemical control is so far the main method to partially contain the disease, which is neither cost 

efficient nor environmentally friendly, thus breeding for resistance and biological control for 

early blight are two solutions of high demand. 

The full production potential of potato cultivars can be achieved by over-coming the threat of 

biotic and abiotic stresses. As part of the planned project AiPPARENT, the effect of combined 

stresses, namely drought and leaf spot infection, will be analyzed. To enable this, this study 

aims at comprehensive understanding of the morphological, histological and proteomic reac-

tions of commercial potato varieties (Bintje and Norvarno) to different isolates of Alternaria 

alternata and Alternaria solani. 

An inoculation protocol will be optimized by variation of plant parts and inoculum concentra-

tions. This protocol will be then used to inoculate potato genotypes in vitro to assess their reac-

tion by taking photos to be investigated by special software and by histological analysis. 

The differentially abundant proteins revealed by proteomic comparison could contain potential 

biomarkers for resistance to early blight. 
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INTRODUCTION 
Potatoes (Solanum tuberosum) are the most important non-cereal crop in the world and are a 

significant part of the diet of over 1.5 billion people across the globe (Vreugdenhil et al., 2007) 

with total planted area of approximately 19.26 million hectares worldwide (STATISTA 2017) 

and around 385.07 million metric tons of production (STATISTA 2017) Fig. 1. The starch con-

tent of potatoes is widely used for industrial processes, such as in the production of paper, glue, 

building materials, plastics, pharmaceuticals and bio-fuel (Roper, 1996; Liang and McDonald 

2014). 

Figure 1 World potato production, 2002-2014 (Source STATISTA 2017) (accessed 26 Dec. 2017) 

World food supplies are tightening and there is no balance between food production and popu-

lation growth (Brown, 1981). Despite the continued expansion of the world population and the 

limitation of the available resources needed to produce food, global warming and climate 

changes linked with it, output abiotic and biotic stress combinations, which sorely affect crop 
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production (Mittler, 2006; Prasad et al., 2011; Atkinson et al., 2013; Narsai et al., 2013; Prasch 

and Sonnewald, 2013; Suzuki et al., 2014; Mahalingam, 2015; Pandey et al., 2015; Ramegowda 

and Senthil-Kumar, 2015). Regarding biotic stresses, Alternaria species most importantly A. 

alternata (Ardestani et al., 2010) and A. solani (van der Waals et al., 2004) are crucial fungal 

pathogens affecting potato production (Shtienberg & Blachinsky, 1996; Ardestani et al., 2010).  

The symptoms of alternaria leaf spot appear initially as brown spots on basal leaves and spread 

progressively to upper leaves. Spots eventually agglomerate, and the infected leaves dry up 

(Lagopodi & Thanassoulopoulos, 1998). 

Alternaria solani causes early blight of potato species (van der Waals et al., 2004). Additionally, 

Alternaria alternata was reported to cause brown spot on potato leaves in Israel (Droby et al., 

1984). 

Both A. solani and A. alternata can cause foliar diseases on potato in Germany (Leiminger et 

al., 2014) and different European countries (Hansen et al., 2016) 

The objectives of this project are to study the morphological, histological and proteomic plant 

reactions of different starch potato genotypes to Alternaria spp. as biotic stress. Hence, this 

study will pave the way for later documentation of combinational stress reactions of the Alter-

naria leaf spot and drought stress. 

 

 

 

 

 

 

 

 

 

 



 

7 
 

2 LITERATURE REVIEW 

  2.1 Introduction of Solanum tuberosum 

The preliminary introduction of the potato in Europe was to the Canary Islands in 1567 (Hawkes 

and Francisco-Ortega, 1993). It was recorded that, potato was fed to patients in the Carmelite 

hospital in Seville, Spain with noteworthy therapeutic results. Accordingly, speculating that 

potatoes were grown in some way and acknowledged as medicinal food within a few years after 

its introduction is possible (Salaman, 1949). Gaspard Bauhin or “Caspar Bauhin” is a famous 

Swiss botanist who was the first to name the potato “solanum tuberosum esculentum” (Hawkes 

1956). In German, the potato was called “kartoffel”, a possible sound-alike of tartouffli. In 

Swiss, it was called erdäpfel, while in Italian it was called truffle, or tartouffli. In France, it 

became known as “pomme de terre”, and in the Netherlands aardappel (Navarre and Pavek 

2014). 

  2.1.1 Botanical characterization and distribution 

Taxonomy of the genus Solanum 

Classifications of the family typically recognized two subfamilies, Cestroideae and Solanoi-

deae (D’Arcy, 1979, 1991; Hunziker, 1979, 2001; Olmstead & Palmer 1992). An additional 

subfamily, Nolanoideae, has been segregated by some taxonomists as a distinct family, Nola-

naceae (Cronquist, 1981; Thorne, 1992; Hunziker, 2001). Solanum is categorized within the 

subfamily Solanoideae and considered as one of the largest genera of family Solanaceae of an 

estimate of 1500 species, 1000 of which are contemplated to be originated in America 

(Hunziker, 1979; Frodin 2004; Bohs 2001). Tuber and non-tuber bearing Solanum are catego-

rized within two subsections of section Potatoe, Potatoe and Estolonifera (Hawkes 1990). The 

subsection Potatoe contains all tuber-bearing potatoes, including common potato S. tuberosum. 

Moreover, Solanum species have been a material of many taxonomical studies (Hawkes 1956; 

Heiser et al. 1965; Bohs and Olmstead 2001; Bohs 2005; Levin et al., 2006; Weese and Bohs 

2007; Vorontsova and Knapp 2012). S. tuberosum the focus of this study is divided into two 

subspecies tuberosum and andigena. The subspecies tuberosum is the cultivated potato in North 

America and Europe for example. Furthermore, subspecies andigena also contains cultivated 
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species, but cultivation is restricted to Central and South America (Hawkes, 1990; Hanneman, 

1994). 

Geographical distribution and wild species 

Figure 2 Number of observations of wild potato species per 50 × 50 km grid cell. A circular neighborhood 

with a radius of 50 km was used to assign observations to a grid cell. There are 1317 grid cells with observa-

tions (Hijmans & Spooner 2001). 

Species within the genus Solanum that form more than 1000 members (D’Arcy 1991; Burton 

1989) are distributed in different continents around the world Fig. 2. Solanum contains several 

crops of high economic importance (Bohs 2005; Weese & Bohs 2007) prominently, potato So-

lanum tuberosum which occur in 16 countries as a wild type, 88% of the observations are from 

Argentina, Bolivia, Mexico, and Peru (Hijmans 2001). Some wild Solanum species can tolerate 
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zero temperature or even below (S. acaule and S. megistacrolobum), on another extreme, S. 

berthaultii, S. neocardenasii, and S. gracilifrons are species adapted to hot and dry conditions 

(Hawkes 1990). These adaptations to a wide range of habitats have made the wild species tol-

erant to different environmental stresses and resistant to a broad range of pests and diseases 

(Hawkes 1994). 

Morphology 

S. tuberosum subsp. tuberosum is a herbaceous perennial with weak stems that grow to about 

60 cm in length and vary according to the variety. They carry pink, purple, red, white or blue 

flowers with yellow short-filaments stamens and long pinnate spirally arranged leaves. The 

fruits are spherical yellowish or green, significantly variable in seed content and less than one 

inch in diameter (Anonymous, 1996; Hawkes, 1990). 

A typical potato leaf consists of mid-rib, on which, two to four pairs of primary leaflets and 

secondary leaflets positioned between the primary ones in an irregular form are found. Tiny 

unobtrusive tertiary leaflets can also be noticed along the mid-rib which is attached to the plant 

by a petiole (McCauley et al., 1988). 

A potato plant consists of a variable number of main stems, which will exhibit a variable degree 

of branching depending on genotype, physiological age of the mother tuber and environmental 

conditions. The growth nature of each individual stem is certain: it produces leaves and com-

pletes its development with forming a primary inflorescence (Danert, 1957; Almekinders & 

Struik, 1994).  

Potato inflorescences are single or compound cymes and the number of flowers per inflo-

rescence and per cyme depends on the genotype, the environment and the position of the inflo-

rescence in the shoot system (Almekinders & Wiersema, 1991; Almekinders & Struik, 1994). 

Tubers are located at the end of stolons under the soil surface which are true stems, not roots. 

The general appearance of tubers are white or cream to yellow color, the skin of the tuber is 

light brownish to red (Hawkes 1988 and 1994).  

Potato tubers are the only edible part of the plant and are greatly shortened and thickened stems 

that bear scale leaves, each one with a bud in its axil (Ewing and Struik 1992). The stolons are 

modified lateral shoots, usually developed from the basal nodes of the main and secondary 
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stems “branching from the basal part of the main stem”. Environmental factors, such as tem-

perature, nutrients and water availability and darkness have a pronounced effect on stolon de-

velopment (Clark 1921; Booth 1959 and 1963).  

When the physiological maturity of a potato tubers is reached, potato tubers may enter a state 

of dormancy. Dormancy define as the physiological state of the tuber in which even when 

placed in optimum germination conditions it does not sprout (Reust 1986; Sonnewald and 

Sonnewald, 2014). Various parameters of potato tuber dormancy have been described. The du-

ration of innate dormancy depends largely on the cultivar and to some extent on the conditions 

during tuber growth (Davidson 1958; Lindblom 1970; Burton 1978; Harkett 1981). 

Tuberization is a complex developmental process that requires the interaction of environmental, 

biochemical, and genetic factors (Kolomiets et al. 2001). Regarding the biochemical factors, 

different important hormones for tuber induction ex. gibberellic acid (GA), cytokinin, jasmonic 

acid and related compounds, or abscisic acid (ABA) were reviewed in many studies (Ewing and 

Struik 1992; Ivana et al., 1997; Xu et al., 1998; Suttle, 2004). 

  2.1.2 Breeding, propagation and production 

Breeding & Propagation 

Potato species constitute a polyploid series ranging from diploids (2n=2x=24) to hexaploids 

(2n=6x=72) however, most potato cultivars are tetraploids (Douches and Jastrzebski 1993; 

Carputo et al. 2003). Modern potato breeding began in England with hybridization between 

varieties using artificial pollination (Knight 1807) and it burgeoned between the nineteenth and 

twentieth centuries where many new cultivars were produced (Vreugdenhil and Bradshaw 

2007). In the World Catalogue of Potato more than 4500 varieties are registered (Pieterse and 

Hils 2009; Pieterse and Judd 2014).  

The variability and adaptability of wild potato types to different environmental conditions, both 

gave the ability to the cultivated potato species to be grown in short and long days climates and 

survive relatively high and low temperatures (Hawkes 1990).  

Potato traditional breeding is time intensive and complicated process due to many facts, most 

notably: Many wild potato species are cross-incompatible with each other and with S. tu-

berosum cultivars (Hermsen, 1978; Pandey, 1962). 2n gametes are common in wild Solanum 
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species, they likely contributed to the production of spontaneous tetraploids (Marks, 1966; 

Quinn et al., 1974). Tetraploid Potato species are highly heterozygous and tetrasomic in nature 

and suffer inbreeding depression upon selfing (Bradshaw, 2006; Muthoni et al., 2015). The 

selection cycle, from initial crosses to variety release, requires approximately 10 years or some-

times more than 30 years (Gebhardt 2013, Haverkort et al. 2009). 

Potato can be propagated vegetatively by tubers, tissue culture and by cuttings (Harris 1978), 

Also can propagate sexually by what so called “TPS” or true potato seed (Pallais 1991). 

While diploid wild species are often self-incompatible (Hosaka and Hanneman 1998, Pal and 

Nath 1942), the tetraploid cultivars and polyploidy species are self-compatible (Hawkes, 1990). 

Moreover, many polyploidy species are disomic polyploids with a selfing nature, but they have 

the potential to produce selfed true seed and tubers (Watanabe et al., 1994). 

Nevertheless, crossing of incompatible potato species may also be achieved using polyploidy 

manipulation and different special techniques such as, embryo rescue and rescue pollination 

(Valkonen et al., 1995; Watanabe et al., 1995). 

There is a continuing need for new improved potato cultivars to combine high levels of durable 

disease and pest resistance with acceptable yields and the quality demanded by processors and 

supermarkets (Bradshaw et al. 1998). Furthermore, Haverkort and Verhagen (2008) reviewed 

the likely consequences of climate change on potato production based on the International Panel 

on Climate Change report (IPCC, 2007) hence, breeding for drought and heat tolerance are of 

a great importance because of the adverse effect of high temperatures on irrigation water avail-

ability and tuberization (Bradshaw, 2010). 

Recent research projects are aiming for marker assisted breeding, protoplast fusion, genetic 

mapping and transcriptome data as the next mean of practicing breeding on potato cultivars.  

The Solanaceae Coordinated Agricultural Project (SolCAP) developed an Infinium SNP array 

with 8303 SNPs (Felcher et al., 2012; Hamilton et al., 2011), which is used to examine popula-

tion structure, diversity, and heterozygosity in a panel of 250 clones (SolCAP Diversity Panel) 

representing a wide-range of cultivars, including historical and recently released cultivars, ad-

vanced breeding lines, and many wild species (Hirsch et al., 2013). 
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One recent approach to sequence the potato genome was done by Xu et al., (2011), they se-

quenced a unique doubled-monoploid potato clone and were succeeded to generate a high-qual-

ity draft potato genome sequence which provides better understanding for eudicot genome evo-

lution. Using a combination of data from the vigorous, heterozygous diploid RH “S. tuberosum 

group Tuberosum RH89-039-16” and relatively weak, doubled-monoploid DM “S. tuberosum 

group Phureja DM1-3 516 R44” 

  2.1.3 Potato production & economic relevance 

Ninety three percent of the world’s potatoes are grown in the northern hemisphere (Hijmans, 

2001). The two-major global potato production zones are temperate climates with a latitude 

between 45°N and 57°N, where potato varieties are grown as a summer crop, such as Western 

and Eastern Europe, northern China, northern USA, and southern Canada, and subtropical low-

lands with a latitude between 23°N and 34°N, where potato varieties are grown as a winter crop, 

such as the Ganges plain, southern China, southern USA, northern Mexico, and Egypt (Hijmans, 

2001). 

Potatoes can be grown at different temperatures, ideally, average daily temperature range below 

21◦C and above 5◦C, and another requirement is adequate water from rain or irrigation (Gopal 

and Khurana, 2006). 

S. tuberosum species can be successfully grown under very diverse environmental conditions 

however general parameters can be determined for the cultivation, some of which are: 

• The S. tuberosum subsp. tuberosum tuber cannot survive -3°C and lower temperature as the 

leaves die at -4°C (van Swaaij et al., 1987). Potato tubers are destroyed by a frost period of 25 

hours at -2°C or a frost period of 5 hours at -10°C (Dale 1992).  

• Potatoes are very sensitive to soil water deficiency and can tolerate a wide range of soil pH, 

normally 5 and higher but good production was observed at a pH of 3.7 (Vayda, 1994; Ackerson 

et al., 1977; Epstein and Grant 1973). 

• Short days <14 hours and moderate ground temperatures (15-18°) enhance tuber formation. 

Longer days (14-16 hours) and higher (day) temperatures (20-25°) enhance flowering and seed 

formation (Beukema and van der Zaag, 1979; Burton, 1989). 

• As potatoes have a shallow root system in comparison to other crops (Iwama and Yamaguchi 

2006; Iwama 2008), a comprehensive fertilization management especially regarding nitrogen 
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and phosphorus is essential for high tuber yield and quality (Ojala et al., 1990; Rosen et al., 

2014). 

The commercial value of potatoes is increased considerably when they are processed into edible 

products that appeal to consumers on flavor, texture, appearance, and most of all convenience 

(Kirkman, 2007). In industrialized countries, direct consumption of potatoes has greatly de-

clined, whereas consumption of potato products (e.g. chips) has increased. For example, in Ger-

many consumption of fresh potatoes declined from 87 kg/cap/year in 1971 to 42 kg/cap/year in 

1999, however during the same period consumption of potato products increased from 14 

kg/cap/year to 29 kg/cap/year (OECD 2015). 

Since the first potato starch plant was established in the USA in the 1830s (Treadway, 1962), 

the industry has developed in North America and Europe, particularly in the Netherlands, Po-

land, France, and Germany (Burton, 1989). Today potato starch is the starting material for the 

preparation of more than 500 different commercial products (Davies, 2002). 

Pests & diseases 

Some important insects that commonly transmit potato diseases or damage the plants include: 

Potato tuber moth (PTM, Phthorimaea operculella Zeller): is one of the most damaging pests 

of potatoes in field and storage and is generally of greatest importance in warmer climates (Ra-

man 1988) 

Colorado potato beetle (Leptinotarsa decemlineata): is one of the most serious insect pest and 

considered as threat to potato crops in most potato-growing areas of the world (Weber and Ferro 

1994) 

Andean potato weevil (Premnotrypes spp.), are the most important insect pests of potatoes 

throughout the Andean region (Parsa et al., 2006).  

Cystnematodes (Globodera pallida and G. rostochiensis): which penetrate and feed on roots 

are most damaging nematodes worldwide (Di Vito et al., 1982). 

Diseases to which potato varieties are susceptible to can be fungal, bacterial and viral diseases. 

Potato crop can be affected by approximately 160 diseases and disorders of which 50 are caused 

by fungi, 10 by bacteria, 40 by viruses and others by non-parasitic, or due to unknown causes. 

(Arora & Khurana 2004). 
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Fungi produce various secondary metabolites (SMs) which affect their host plants at different 

stages of pathogenesis (Berestetskiy, 2008; Friesen et al., 2008a,b; Meena et al., 2015). 

Late blight is one of the most important fungal diseases which is caused by Phytophthora in-

festans which devastated potato production for the last century and a half, it has been claimed 

that, it is the most important potato disease in the world (Niederhauser 1993). late blight has 

been reviewed in detail by Ehrlich and Ehrlich (1966) and Akino et al. (2014). 

Early blight which occurs in in Asia, Africa, Australia, Europe, North, Central and South Amer-

ica (Miller 1978) and caused by Alternaria solani (Harrison 1974; Rotem 1981). The first ref-

erence to the fungus as a parasite and its association with potato leaf blight was by Galloway 

(1891) in Australia. 

Figure 3 Pathogenicity of the representative isolates of three Alternaria species on detached potato leaflets. 

(a,b) A. tenuissima; (c,d) A. alternata; (e,f) A. solani; (a,c,e) upper surface; (b,d,f) lower surface. The experi-

ment was conducted using detached apical leaflets of the compound leaves from 45‐day‐old plants of potato 

cv. Favorite. A drop of 20 μL spore suspension was inoculated on the upper surface of each leaflet (one point 

per leaflet). Disease severity (DS) was scored on a 4‐point rating system after 7 days incubation at 25°C and 

90% relative humidity (Zheng et al., 2015). 

With special focus on Alternaria spp. causing fungal diseases, the eight Alternaria species doc-

umented to cause potato foliar diseases worldwide comprise A. solani (van der Waals et al., 
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2004), A. alternata, A. tenuissima (Fig. 3 a,b), A. dumosa, A. arborescens, A. infectoria (Ar-

destani et al., 2010), A. grandis (Rodrigues et al., 2010) and A. interrupta (Taheri et al., 2009).  

Alternaria solani causes early blight of potato and other Solanum crop species (van der Waals 

et al., 2004) (fig. 3 e,f). Alternaria alternata was reported to cause brown spot on potato leaves 

in Israel (Droby et al., 1984). Alternaria grandis has been recorded as the cause of early blight 

on potato in Brazil (Rodrigues et al., 2010). In addition, A. tenuissima, A. dumosa, A. arbo-

rescens, A. infectoria and A. interrupta have been reported to cause potato leaf spot in Iran 

(Ardestani et al., 2010). Brown leaf spot disease caused by (Alternaria alternata) (Fig. 3 c,d) is 

one of the destructive and common diseases of the cultivated potato particularly in areas with 

frequent rainfall and high relative humidity (Nash and Gardner 1988). This disease progres-

sively weakens the plant and increases its susceptibility to infection as it reduces the photosyn-

thetic leaf area and increases the imbalance between nutrient demand in the tubers and nutrient 

supply from the leaves, subsequently leading to reduced yields (Simmons 2000). 

 

2.2 Biology of Alternaria spp. 

  2.2.1 Morphology of Alternaria spp. 

Conidiophores of the majority of the Alternaria species produce asexual spores (conidia) meas-

uring between 160 and 200 μm long (Mamgain et al., 2013).  

The key taxonomic feature of the genus Alternaria is the production of large, multicellular, 

dark-colored conidia with longitudinal as well as transverse septa. These conidia are broadest 

near the base and gradually taper to an elongated beak, providing a club-like appearance (Fig. 

4) (Singh Saharan 2016). 

According to a recent study by Zheng et al. (2015), potato leaves with disease symptoms were 

collected from 193 locations in 16 provinces, autonomous regions or municipalities in China. 

A small piece of leaf tissue (5 × 5 mm) was taken from the margin of a lesion, surface disin-

fected with 0.3% sodium hypochlorite for 2 min and 70% ethanol for 40s, rinsed with sterile 

distilled water three times and placed onto Petri dishes containing potato dextrose agar (PDA) 

amended with streptomycin sulphate (50 mg L-1). The PDA plates were incubated for 7 days at 

25°C in the dark. Multiple fungal colonies were obtained from each leaf lesion and only those 
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with different morphologies were selected as individual isolates. One hundred and eighty-two 

Alternaria isolates were classified into three morphological groups: A. tenuissima (A-ten), A. 

alternata (A-alt) and A. solani (A-sol).  

Spore suspensions of the three smallspored Alternaria species were harvested by flooding the 

cultures on PDA “potato carrot agar” plates with sterile distilled water, gently scraping the col-

ony surface and collecting the suspension. After filtering through four layers of cheesecloth, the 

spore suspension was adjusted to 106 conidia mL-1 using a haemocytometer.  

For preparation of spore suspensions of A. solani, the mycelium of the test isolates were incu-

bated on V8 juice agar for 7 days in the dark at 22°C and were then transferred to a growth 

chamber with a 16 h light cycle at 20°C (Langsdorf et al., 1990). After removing the aerial 

mycelium with a brush, spores were collected 2 days later from the cultures and spore suspen-

sions were prepared following the same steps as for the small spored Alternaria species. The 

sporulation patterns on PCA plates also differed accordingly among the groups (Fig. 4 d,e,f).  

A hundred and ten isolates were attributed to group A-ten, developing loose cottony and grey-

ish-green to olive brown colonies on PDA plates, these isolates were characterized by formation 

of unbranched conidial chains up to 12 conidia in length with one or two lateral branches on 

PCA plates. Conidiophores were short, arising singly, 16.0-71.2 µm long and 2.6-6.2 µm wide. 

The conidia were 22.5-43.4 × 8.2-14.2 µm and typically ovoid to obclavate in shape. The num-

ber of transverse septa and longitudinal septa of conidia varied from 1 to 6 and from 0 to 2, 

respectively. Based on these features, isolates in this group were identified as A. tenuissima 

(Fig. 4a,d,g).  

Forty-two isolates attributed to group A-alt were dark grey to black brown and densely turfy on 

PDA plates. On PCA plates, these isolates produced conidial chains 8-12 spores in length with 

numerous secondary and occasionally tertiary chains branching from apical and median cells. 

Conidiophores were single or fasciculate, straight or bent, 22.5-79.6 µm long and 2.0-4.9 µm 

wide. Conidia were obpyriform to ellipsoid, 20.8-40.5 × 7.6-12.0 µm, with 3-8 transversal and 

0-3 longitudinal septa. These isolates were identified as A. alternata (Fig. 4b,e,h).  

Thirty isolates attributed to group A-sol had a dense dark grey to black colony with sparse aerial 

mycelium, and produced simple conidiophores bearing dark, multiseptate conidia with 9-11 

transverse septa and 1-2 longitudinal septa. Conidia with one beak were long-ovoid, 102.7-
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115.0 × 15.0-25.3 µm with a beak 80.5-110.6 µm in length (beak width tapered from 5.0-8.0 

µm to about 2.5 µm at the tip). Conidia with two beaks were shorter in length, 82.5-105.0 × 

16.7-20.5 µm with an initial beak 60.0-84.7 µm long and a second beak 62.8-85.5 µm long. 

Based on these characters, the isolates were identified as A. solani (Fig. 4e,h). 

Figure 4 Colonies, conidia and sporulation patterns of the representative isolates of three Alternaria species. 

(a–c) Colonies of the representative isolates of A. tenuissima, A. alternata and A. solani observed on potato 

dextrose agar plates, respectively; (d–f) conidia of the representative isolates of A. tenuissima, A. alternata 

and A. solani observed on potato carrot agar (PCA) plates, respectively; (g–h) sporulation patterns of the 

representative isolates of A. tenuissima and A. alternata observed on PCA plates, respectively (Zheng et al., 

2015). 

  2.2.2 Life cycle and propagation 

The plant pathogenic fungi are divided into biotrophic, hemibiotrophic, and necrotrophic path-

ogens. These different pathogenic life styles require different molecular infection mechanisms. 

Necrotrophic fungi infect and kill host tissue and extract nutrients from dead host cells. Bio-
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trophic fungi colonize living host tissue and obtain nutrients from living tissue; whereas hemibi-

otrophic fungi display two phases during the infection process; first is an initial biotrophic phase 

followed by a necrotrophic stage (Lo Presti et al., 2015). Early blight is caused by the fungus, 

Alternaria solani, producing dark to black conidia (asexual spores and has not been found to 

produce sexual spores) which survives in infected leaf or stem tissues on or in the soil (Fig. 5) 

(Schultz and French, 2009). The pathogen overwinters as mycelium or conidia in plant debris 

ex. (potatoes or tomatoes), soil and infected tubers or on other host plants of the same family. 

Conidia are spread by wind and splashing water. Wind, rain and insects are the principle meth-

ods of dissemination of A. solani (van der Waals, 2002). Spores landing on leaves of susceptible 

plants germinate and may penetrate tissues directly through the epidermis, through stomata and 

or through wounds such as those caused by sand abrasion, mechanical injury or insect feeding. 

Incubation periods (time from infection to symptom development) vary greatly, depending on 

age and susceptibility of plants. Epidemics increase in severity after sandstorms, due to in-

creased wounding of the epidermis. The primary infections become necrotic with chlorotic ha-

los. Mycelium from necrotic lesions produces conidia that infect healthy leaves and begin sec-

ondary infections (Fig. 5) (van der Waals, 2002). Potato tubers become infected as they are 

lifted through infested soil at harvest. Tuber infection usually occurs through wounds and/or 

through natural openings (lenticels), which tend to open when the soil is wet (Fig. 5) (Sikora, 

2004). Alternaria produces host-specific toxins as well as non-host specific toxins (nHSTs) 

(Thomma, 2003). Generally, nHSTs toxins have relatively mild phytotoxic effects, they are not 

absolutely required for establishing disease since they are also toxic to plant species outside the 

host range of the pathogen affect a broad spectrum of plant species and are thought to be an 

additional factor of disease alongside, for instance, penetration mechanisms and enzymatic pro-

cesses (Meena et al., 2017). More than 70 phytotoxins produced by Alternaria spp. have been 

characterized, and include virulence factors that have both non-specific and specific host inter-

actions (Meena et al., 2017). Determination of the exact mode of action of phytotoxic com-

pounds in pathogenesis or virulence is critical and it can be determined by studying virulence 

and sensitivity of toxins produces by different isolates on host genotypes (Strange 2007, Meena 
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et al., 2012). Host-selective toxins (HSTs) are mycotoxins which are often essential for both 

host specificity and pathogenicity. 

Figure 5 The diseases cycle of the early blight pathogen, Alternaria solani. (Warton and Wood, 2012). 

HSTs are produced during germination of spores on plant surfaces (Mausunaka et al., 2005). 

Ten phytopathogenic fungi belonging to the genus Alternaria, are known to produce HSTs 

(Otani et al., 2011). Seven of these pathogens cannot be distinguished from ubiquitous sapro-

phytic A. alternata on the basis of conidial morphology, but each pathotype can be distinguished 

by its unique pathogenicity (Nishimura et al. 1978, 1982). Five species and two sub-species 

were grouped into seven pathotypes, corresponding to their hosts Japanese pear, apple, tobacco, 

rough lemon, tangerine, tomato, and strawberry; these produce AK-, AM-, AT-, ACR- (ACRL-

), ACT- or ACTG-, AAL- (AL-), and AF-toxins, respectively (Nishimura and Kohmoto 1983; 

Kohmoto and Otani 1991). AK-toxin, AF-toxin and ACT-toxin exert primary effects on the 
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plasma membrane of susceptible cells (Fig. 6) (Maekawa et al., 1984; Otani et al., 1985; 

Kohmoto et al., 1993; Park & Ikeda, 2008). A study on the structure–selectivity relationships 

of AK-, AF- and ACT-toxins suggested that the initial interaction between the toxin and its 

putative receptor site on the plasma membrane of susceptible cells probably involves a biolog-

ical reaction, such as ligand binding to a receptor, rather than a simple physicochemical reaction 

(Nishimura & Nakatsuka, 1989). AM-toxins have two target sites for affecting susceptible apple 

cells: one on the plasma membrane and another on chloroplasts membrane (Fig. 6) (Park et al., 

1981; Zheng et al., 2015). 

However, Otani et al. (2011) suggested that the chloroplast is a primary target site of AM-toxin. 

In the chloroplasts of susceptible apple leaves the chloroplast disorganization is compatible with 

the reduction in chlorophyll content and inhibition of photosynthetic CO2 assimilation in the 

toxin-treated susceptible leaves (Kohmoto et al., 1982). Because of structural and functional 

similarity, AAL-toxins and fumonisins are collectively referred to as sphinganine-analogue my-

cotoxins (SAMs) (Gilchrist et al., 1995). SAMs induce programmed cell death in susceptible  

Figure 6Figure 6 Schematic presentation of target sites of HSTs produced by Alternaria alternata. Ch, chlo-

roplast; ER, endoplasmic reticulum; Gl, Golgi apparatus; Mt, mitochondrion; Nu, nucleus; Pd, plasmo-

desma; Pm, plasma membrane; Va, vacuole (Tsuge et al., 2013). 
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tomato cells throughout inhibiting ceramide biosynthesis by ceramide synthases proteins in the 

endoplasmic reticulum (Wang et al., 1996; Spassieva et al., 2002, 2006). ACR-toxin caused 

uncoupling of mitochondrial oxidative-phosphorylation with a loss of membrane potential, and 

also caused leakage of the cofactor NAD+ from the tricarboxylic acid cycle which takes place 

in the matrix of the mitochondria (Akimitsu et al., 1989). 

In summary, the Alternaria HSTs are a diverse group of low-molecular-weight substances, most 

were found in culture filtrates as families of closely related compounds. The Alternaria HSTs 

cause necrosis on leaves of susceptible cultivars at concentrations as low as 10-8 to 10-9 M and 

no necrosis on leaves of resistant cultivars even at higher concentrations (Otani et al., 1995). 

Figure 7Figure 7 Toxicity of AK-toxin produced by the Japanese pear pathotype of Alternaria alternata. The 

culture filtrate of the Japanese pear pathotype was dropped on slightly wounded points of left-half leaves. 

Right-half leaves were spray-inoculated with a conidial suspension. Leaves were incubated for 24 h (Tsuge 

et al., 2013). 

  2.2.3 Symptoms of Alternaria spp. in potato 

The effect of phytotoxins on plants at the physiological level is characterized by the malfunc-

tioning of many physiological processes including respiration, transpiration, photosynthesis, 
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nutrients translocation, growth and development. It results in the appearance of specific symp-

toms including wilting, growth suppression, chlorosis (Fig. 3 c,d), necrosis (Fig. 7), and spot-

ting of aerial portions (Taj et al., 2015). 

Early blight caused by Alternaria spp. is a problem in many potato growing areas of the 

world, occurs particularly in the regions with high temperature and alternating periods of dry 

weather and high humidity and/or irrigated potato soils, light-textured, sandy, low in organic 

matter (Gudmestad and Pasche 2007).  

  2.2.4 Source of resistance in potato spp. 

Plants defend themselves from pathogen infection through a wide variety of mechanisms that 

can be either local or systemic, constitutive or inducible (Dixon 1986; Keen 1990; Ryals et al., 

1992; Ryals et al., 1994). 

When a plant has a specific resistance (R) gene which interacts with the interrelated avirulence 

(avr) gene from the pathogen, an expeditious defense mechanism known as the hypersensitive 

response (HR) happens to suppress the infection (Flor 1971). 

Plants avert pathogen infections by eliciting a cascade of defense mechanisms, including rein-

forcement of the cell wall (Kauss, 1987; Barber et al., 1989; Bradley et al., 1992), synthesis of 

phytoalexins and oxidation of phenolic compounds (Hahlbrock and Scheel, 1989; Dixon and 

Lamb, 1990), activation of defense-related genes (Bowles, 1990; Dixon and Harrison 1990), 

and localization of cell death or the hypersensitive response (Keen, 1992). Associated with these 

reactions, the production of active oxygen species (AOS), such as the superoxide anion radical 

(O2-), hydroxyl radical (OH), and hydrogen peroxide (H2O2) known as oxidative burst.  

The oxidative burst has been postulated to play an important role in plant defense (Baker and 

Orlandi, 1995), induction of an intracellular signaling pathway (Desikan et al., 1999; Grant et 

al., 2000), and in the activation of systemic-acquired resistance (Alvarez et al., 1998; Hae-Jun 

et al., 1998). Chai and Doke (1987), showed that superoxide dismutase and peroxidase are sys-

temically induced in potato after local infection with Phytophthora infestans. To study the effect 

of H2O2 in plants, Wu et al. (1995) expressed the gene encoding glucose oxidase (GO) from 

Aspergillus niger in transgenic potato plants. GO (β-D-glucose:oxygen 1-oxidoreductase, EC 

1.1.3.4) catalyzes the oxidation of β-D-glucose by molecular oxygen, yielding gluconic acid 
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and H2O2. They have concluded that, the increased leve1 of H2O2 in transgenic potato plants 

mediates strong resistance against soft rot caused by Erwinia carotovora subsp carotovora and 

enhanced resistance to late blight caused by Phytophthora infestans. Moreover, many studies 

have strongly suggested the crucial role in which nitric oxide (NO), β-aminobutyric acid 

(BABA), γ-aminobutyric acid (GABA), Laminarin (the linear β-1,3 glucan) and 2,6-dichloroi-

zonicotinic acid (INA) play in response to biotic and abiotic stresses in plants (Arasimowicz-

Jelonek et al., 2013; Moreau et al., 2010; Ton and Mauch-Mani 2004; Jakab et al., 2001; Con-

rath et al., 1995). 

In another study by Yoshioka et al. (2001), The results of treating potato tubers with hyphal 

wall components (HWC) elicitor from Phytophthora infestans, caused a rapid but weak transi-

ent accumulation of H2O2 (phase I), followed by a massive oxidative burst 6 to 9 h after treat-

ment (phase II). The team have isolated homologs of gp91 phox, a plasma membrane protein 

of the neutrophil NADPH oxidase, from a potato cDNA library. Molecular cloning of the cDNA 

showed that there are two isogenes, designated StrbohA and StrbohB, respectively. RNA gel 

blot analyses indicated that StrbohA is constitutively expressed at a low level, whereas StrbohB 

is up-regulated during the phase II burst. DPI (Diphenylene iodonium) blocks both bursts, while 

pretreatment of the protein synthesis inhibitor cycloheximide with the tuber nullify only the 

second burst. These data suggest that StrbohA and StrbohB contribute to phase I and phase II 

bursts, respectively.  

Genetic studies indicate that Rboh (Respiratory burst oxidase homolog) gene is a key regulator 

of ROS production and displays pleiotropic functions in plants (Sagi et al., 2004; Torres and 

Dangl, 2005). 

The control of early blight is largely dependent on fungicidal treatment. Because of the polycy-

clic nature of the disease (Shuman, 1995), several applications of fungicides are required to 

offer sufficient protection for potatoes from early blight attack (Teng & Bissonnette 1985). 

The use of resistant cultivars in the control of early blight offers an economical and environ-

mentally friendly alternative (Spiertz et al., 1996). 

In a recent study by Abuley et al. (2017) in Denmark, the team conducted field experiments in 

2015 and 2016 using randomized complete block design with four replicates to classify the 

resistance level to early blight of the main potato cultivars in Denmark. Conidia and mycelium 
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of both A. solani and A. alternata were used for the inoculation. The disease progress curves 

(DPC) of early blight on the cultivars with different maturity classes were compared to that of 

Bintje as susceptible, early-medium maturity class control cultivar. 

Figure 8 Figure 8 The number of cultivars in the different resistance classes according to the foliage maturity 

of the cultivars in 2015 and 2016. The values 1, 2, 3, 4, 5 and 6 on the x-axis represent very-early, early, 

early-medium, medium, medium-late and late maturing classes, respectively. The resistance classes I, II, III 

and IV represent ‘very susceptible’, ‘susceptible’, ‘moderately slow blighting’ and ‘slow blighting’, respec-

tively. (Abuley et al., 2017). 

In order to classify the resistance level of the cultivars, the team investigated different factors 

which are: multivariate analysis was with the apparent rate of infection, the time to reach 50% 

severity, the relative area under the DPC, the daily defoliation, the disease severity in the middle 

of the epidemic and the duration of the epidemic. None of the cultivars showed complete re-

sistant to early blight according to analysis of the DPC. However, the cultivars showed different 

levels of epidemic development. Accordingly, the resistance levels of the cultivars were classi-

fied into four classes, I, II, III and IV interpreted as ‘very susceptible’, ‘susceptible’, ‘moder-

ately slow blighting’ and ‘slow blighting’, respectively. The team concluded that, the late ma-

turing cultivars were more resistant than the early maturing cultivars Fig. 8. 
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2.3 Protein analysis 

  2.3.1 Introduction to proteomics  

The term proteomics was suggested by Marc Wilkins, back during the 1994 Siena Meeting, to 

simply refer to the “PROTein complement of a genOME” (Wilkins et al., 1996). Similar to 

genomics and transcriptomics, proteomics has evolved to incorporate high-throughput tech-

niques, protocols and methods that contribute to a faster analysis of large numbers of proteins 

in a relatively short time frame (Washburn et al., 2001; Wolters et al., 2001). Proteomics offers 

the possibility of studying simultaneously the total set of proteins that is present in a biological 

unit (from subcellular organelles to ecosystems), together with its arrangement (descriptive pro-

teomics), its abundance (quantitative proteomics), genotype dependent variations (population 

proteomics), implication in development and environmental responses changes (differential or 

comparative proteomics), post-translational modifications (PTMs), and interactions with other 

proteins and molecular entities (interactomics) (Afroz et al., 2011; Bhadauria et al., 2010; Tan 

et al., 2009; Jorrin-Novo et al., 2007). 

  2.3.2 Proteomic studies of potato  

Throughout time, plants have developed acclimatization ability to different biotic and abiotic 

stresses (Jones and Dangl 2006; Chinnusamy et al., 2004). This ability depends mainly on dif-

ferent proteins, the most important of which are phytoalexins, AOS, enzyme inducing the syn-

thesis of phytohormones (salicylic acid, ethylene, abscisic acid and jasmonic acid) and patho-

genesis related proteins (PR) (Baker and Orlandi, 1995; Ewing and Struik 1992; Ivana et al., 

1997; Xu et al., 1998; Suttle, 2004; López-García et al., 2012). 

Proteomics has been used to study potato tuber life cycle and development (Lehesranta et al., 

2006; Agrawal et al., 2008), proteins in potato tubers (Lehesranta et al., 2007) and potato skins 

(Barel and Ginzberg 2008; Chaves et al., 2009). Since many pathogens, such as Alternaria al-

ternata and A. solani infect leaf tissues (Ardestani et al., 2010; van der Waals 2004, 2011) a 

study of biological activities in potato leaves using proteomics becomes important. Lim et al., 

(2012). 

Generally, the standard work flow of a plant fungal pathogens proteomic experiments includes 

few steps: experimental design, sample preparation, protein extraction and purification, protein 
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separation, mass spectrophotometry analysis, protein identification, statistical analysis, valida-

tion of the identified proteins and data analysis management followed by database storage Fig 

9. However, the exact protocol for different proteomics experiments should be optimized ac-

cording to the study purpose (González-Fernández et al., 2010). 

In fungal proteomics, the most used technique is two-dimensional gel electrophoresis (2-DE), 

with an important advantage of separating the proteins with a high resolution of up to 10,000 

spots also the ability to making large-scale protein-profiling experiments (Görg et al., 2004; 

Jungblut and Thiede 1997; Klose and Kobalz 1995; O'Farrell et al., 1977).  

Figure 9 Schematic overview of the work flow in a fungal proteomatic approach (González-Fernández 2010). 
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As indicated by the name, 2-DE consists of two dimensions: First dimension electrophoresis in 

which proteins are separated according to their isoelectric points (pIs) using isoelectric focusing 

(IEF) technique. Second dimension electrophoresis in which proteins are separated according 

to their molecular weight using sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE). The proteins under investigation can then be detected by different staining tech-

niques like colloidal Coomassie blue, zinc-imidazole staining, silver staining and fluorescence-

based detection (Rabilloud et al., 2009; Görg et al., 2004). 

A proteomic study by Liu et al., (2009), investigated the influence of RB gene (resistant gene 

against Phytophthora infestans). Two potato genotypes Katahdin and transgenic potato 

Katahdin which is carrying the RB gene representing susceptible and resistant genotypes re-

spectively were tested. After inoculating both genotypes with P. infestans total leaf proteins of 

both genotypes were extracted. The results showed 12 proteins in relative abundance were dif-

ferent after comparing the genotypes. Five proteins (Ribulose bisphosphate carboxylase small 

chain 2A, Ribulose bisphosphate carboxylase/oxygenase activase, Cytosolic ascorbate peroxi-

dase, Oxygen-evolving enhancer protein 1 and Quinone oxidoreductase-like protein) were sug-

gested to play important roles in photosynthesis and stress responses. 

Lim et al., (2012) suggested that the fractionation strategy using differential centrifugation to 

separate the pellet (cell wall fraction) and the supernatant (cytoplasmic fraction) from potato 

leaf tissues can be used for successful construction of a protein profile in potato leaf tissues to 

study potato leaf physiology, biochemical aspects of abiotic stress and potato-pathogen interac-

tions. 
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An approach by Kato et al. (2012) to investigate the role of nitric oxide in plants, they performed 

a proteomic analysis of S-nitrosylated proteins in potato leaves and tubers using biotin switch 

assay optimized for potato tissues and nano liquid chromatography combined with MS. They 

treated potato leaves and tubers with glutathione (GSH) and S-nitrosoglutathione (GSNO) as 

NO donors Fig.10 and were able to identify 80 S-nitrosylated proteins. They suggested that part 

of those proteins are Redox-related proteins, Defense-related proteins, Photosynthetic-involved 

proteins and metabolic enzymes. 

 

Figure 10 Purification of S-nitro-

sylated proteins in GSNO-treated 

extracts from potato leaves and tu-

bers. Leaf (A) and tuber (B) pro-

teins (5 mg) were treated with 0.5 

mM GSH or GSNO, and subjected 

to biotin switch method. Biotinyl-

ated proteins were purified by af-

finity chromatography using neu-

travidin-agarose. Proteins before 

purification (input) and eluates 

were separated by SDS-PAGE and 

visualized by silver staining. Num-

bers on the left of the panels indi-

cate the position of the protein-

markers in kDa. 
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3 OBJECTIVES 
• Establishing an artificial inoculation system for two potato genotypes with strains of 

Alternaria spp. (Alternaria alternata and Alternaria solani). 

• Photographic documentation of early symptom development. 

• Investigating the morphological and histological reactions of potato leaf tissue to the 

inoculation with Alternaria spp. 

• Identify the proteomic changes of potato leaves in response to the infection by Alter-

naria spp.   

 

4 RESEARCH HYPOTHESES 
• The typical symptoms of potato after early blight infection can be visually identified 

(AI).  

• Different responses of the genotypes to the infection of each fungal strain represented 

in distinct symptoms and morphological abnormalities are expected. 

• The level of resistance/susceptibility of potato genotypes can be evaluated based on 

the result of the screening assay. 

• Observable modification of the protein abundance of the genotypes as a respond to the 

infection should occur. 

• Differentially abundant proteins in susceptible compared to resistant genotypes can be 

used to develop biomarkers. 
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5 MATERIALS AND METHODS 

  5.1 Plant and fungal material 
Seed tubers of commercial potato varieties Bintje (Early medium-maturity) and Norvarno (Late 

maturity) respectively, will be requested from Denmark as they are characterized by their low 

and high resistance to early blight (Alternaria alternata and Alternaria solani) respectively 

(Abuley et al., 2017).  

Pure isolates of different races of A. alternata and A. solani will be requested from DSMZ 

(Deutsche Sammlung von Mikroorganismen und Zellkulturen). The isolates will be stored at 

5oC (Ravikumar et al., 2016) until the time of inoculum preparation. Furthermore, isolates will 

be collected from potato breeders (cooperation with Prof. T. Debener). 

The potato seed tubers will be sterilized with 1% sodium hypochlorite for 5 min and washed 3 

times with sterilized distilled water (SDW), then planted in plastic pots (30 cm diameter, one 

tuber per pot) filled with peat moss and grown in greenhouse under standard cultivation condi-

tions for potato. 

  5.2 Inoculation with A. alternata and A. solani 
For inoculum preparation, sporulation will be induced by maintaining the isolates on potato 

dextrose agar (PDA) medium at 23-25oC for 6 days with 16hL/8hD photoperiod. Conidia will 

be obtained by washing the PDA plates of different isolates (SDW), the suspension will be 

collected in test tubes and adjusted to 106 conidia ml-1 using haemocytometer. 

Four plants 45days old of each of each variety will be grown in greenhouse using the recom-

mended cultivation protocols. The plants will be inoculated by spraying the spore suspension 

then covered with plastic bags moisturized with SDW on the interior layer to maintain sufficient 

humidity thus improve the fungal growth. Experiments will include variation of the following 

factors: inoculum density, physical growth conditions, additional wounding, and testing differ-

ent plant organs for inoculation. 

The degree of aggressiveness for the different isolates will be assessed using the scale for eval-

uation of the damage produced by Alternaria solani in potato greenhouse and field plants 

(Rodríguez et al., 2007). 

The control plants will be treated with SDW under the same cultivation conditions. 
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Late blight and insects will be controlled using the recommended protocols to make sure that, 

early blight will be the only mean of infection. 

Establishing the inoculation protocol will be the basis of a screening assay in which a larger 

number of 10-12 genotypes will be tested for their reaction to Alternaria leaf spot. 

 

  5.3 Morphological and histological analysis  
Morphological identification of typical early blight symptoms on the tested genotypes will be 

assessed and photographs of the plants will be taken in daily bases for later documentation. 

Two sets of leaf tissue samples will be taken from the inoculated and control plants, the samples 

will be taken on different intervals (6, 12, 24, 36, 48 and 72 h) for the histological analysis. The 

samples will be discolored in chloral-hydrated solution (2.5 g/ml) and stained with trypan blue 

(0.05%) then adjusted to slides for examination by differential interference contrast microscopy 

(Dita et al., 2007). 

  5.4 Proteomic analysis 
The second part of the samples taken after inoculation will be processed by phenolic leaf protein 

extraction and methanol precipitation followed by two dimensional electrophoresis (isoelectric 

focusing and SDS-polyacrylamide gel electrophoresis), gel images analysis and mass spectrom-

etry. The exact extraction and purification protocol and the kits that will be used later to be 

determined according to the available resources. However, it will be similar to the protocol 

described by Carpentier et al. (2005) and Liu and Dennis (2009). 

Relevant time points and the genotypes will be identified in the experiments described under 

5.3. 
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6 CALENDAR OF RESEARCH ACTIVITIES 

 

Activity Semester 

  
Winter Summer Winter Summer 

2017/18 2018 2018/19  

Literature review         
Planting and inoculation         
Morphological and histological 

analysis         

Protein analysis         
Quantitative gel          

Mass spectrometry and protein 

identification         
 

Statistical analysis         
Thesis writing         
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